Are you a Health Professional? Jump over to the doctors only platform. Click Here

Biochemical profile may help diagnose, determine aggressiveness of prostate cancer

Print Friendly, PDF & Email

Magnetic resonance (MR) spectroscopy – which analyses the biochemistry rather than the structure of tissues – may someday be able both to pinpoint the precise location of prostate cancer and to determine the tumour’s aggressiveness, information that could help guide treatment planning. In the 27 January online issue of Science Translational Medicine, Massachusetts General Hospital (MGH) researchers report how spectroscopic analysis of the biochemical makeup of prostate glands accurately identified the location of tissue confirmed to be malignant by conventional pathology.

"Collectively analysing all the metabolites measurable with a 7-Tesla MR scanner maps out prostate cancer in a way that cannot be achieved by any other current radiological test or by analysing changes in a single metabolite," says Leo L. Cheng, PhD, of the MGH Imaging and Pathology departments, the study’s senior author. "It detects tumours that cannot be found with other imaging approaches and may give us information that can help determine the best course of treatment."

Prostate-specific antigen screening indicates the potential presence of a tumour, but since benign prostate conditions also affect PSA levels, a surgical biopsy is necessary to detect cancer. Since a tumour may be confined to only a small portion of the prostate, without a way to identify the most suspicious regions, a biopsy sample can miss the malignant area. In 2005, Cheng and his colleagues found that information provided by MR spectroscopy could distinguish prostate cancer from benign tissue and was superior to traditional pathological studies in determining a tumour’s prognosis. That investigation analysed tiny tissue samples with an advanced technique utilising a powerful research magnet. The current study, building on the 2005 study, used a clinical MR scanner to analyse whole prostate glands, an approach that could be applied to patient care.

Spectroscopic readings were taken across sections of five cancerous prostate glands that had been removed from patients. The scans measured proportions of metabolites – biochemicals produced by various metabolic processes – that had been associated with the presence of cancer using data from the 2005 study. After scanning was complete, the prostate glands were examined by standard histological techniques, which determine the presence of tumour based on the tissue’s appearance. The histological analysis was done in a way that preserved the tumour’s location within the prostate.

When the two analyses were compared, five out of seven prostate regions where histologically identified tumour was located also scored high on a spectroscopy-based "malignancy index". The two other tumour regions were near the outer edge of the prostates, where exposure to the air compromised the accuracy of MR spectroscopy results. For those tumours that did match, higher malignancy index scores also corresponded with larger tumours. And while the malignancy index was most accurate in identifying stage II tumours – those confined to the prostate and large enough to be felt in a physical exam – its overall accuracy was more than 90 percent.

Cheng explains that a prostate tumour’s complete metabolomic profile has the potential to give essential information on its biological status. "As we analyse more and more tumours with spectroscopy, we should be able to define profiles that reflect specific clinical and pathological states, achieving a true needle-free, MR biopsy," he explains. "And once these spectra are measured, they can be recombined to provide profiles reflecting parameters from the tumour’s location to, ultimately, its aggressiveness."

Since the current study was conducted using a whole-body clinical MR scanner, it should be adaptable to scanning patients. Because it used the powerful 7-tesla magnetic resonance equipment at the MGH’s Martinos Center for Biomedical Imaging, Cheng plans to further test the approach using 3-tesla equipment, which is available at centres across the country. He and his colleagues are also working on more powerful software to process the amount of data in a full metabolomic screen in real time. After further studies verify their current results, they hope to move into clinical trials within a year or two.

"As long as we can define appropriate metabolomic profiles, this concept could someday be used for any kind of tumour or medical condition," adds Cheng, an assistant professor of Radiology (Pathology) at Harvard Medical School. "Furthermore, this concept can be extended from mapping tissue metabolites to include other disease-sensitive parameters. Eventually we hope to move the field of radiology from analysing images that show the effects of disease to producing images that reveal the disease process itself."

(Source: Massachusetts General Hospital: Science Translational Medicine: February 2010)

Print Friendly, PDF & Email


Posted On: 1 February, 2010
Modified On: 16 January, 2014


Created by: myVMC